Inequality

https://www.linkedin.com/groups/8313943/8313943-6374870205922832386
Let a, b, c be positive real numbers such that
$a^{2}+b^{2}+c^{2}=9$, prove that $2(a+b+c)-a b c \leq 10$.

Solution by Arkady Alt, San Jose,California, USA.

Note that number 10 isn't attainable upper bound for $2(a+b+c)-a b c$ because for any positive a, b, c
such that $a^{2}+b^{2}+c^{2}=9$ holds inequality $2(a+b+c)-a b c \leq 6 \sqrt{2}$.
To prove that we will find maximal value of expression
$E:=\frac{2(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)-9 a b c}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{3}}}$.
Using normalization by $a+b+c=1$ and denoting $p=a b+b c+c a, q:=a b c$ we obtain
$E=\frac{2(1-2 p)-9 q}{\sqrt{(1-2 p)^{3}}}$. Note that $p=a b+b c+c a \leq \frac{(a+b+c)^{2}}{3}=\frac{1}{3}$
Since $^{*} q \geq \max \left\{0, \frac{4 p-1}{9}\right\}$ then $E \leq \frac{2(1-2 p)-\max \{0,4 p-1\}}{\sqrt{(1-2 p)^{3}}}$.
For $p \in(0,1 / 4]$ we obtain $E \leq \frac{2(1-2 p)}{\sqrt{(1-2 p)^{3}}}=\frac{2}{\sqrt{1-2 p}} \leq \frac{2}{\sqrt{1-2 \cdot 1 / 4}}=2 \sqrt{2}$.
For $p \in[1 / 4,1 / 3]$ we obtain $E \leq \frac{2(1-2 p)-4 p+1}{\sqrt{(1-2 p)^{3}}}=\frac{3-8 p}{\sqrt{(1-2 p)^{3}}}$ and, we will prove that
$\frac{3-8 p}{\sqrt{(1-2 p)^{3}}} \leq 2 \sqrt{2}$ as well. Indeed, $8(1-2 p)^{3}-(3-8 p)^{2}=(4 p-1)(1+4 p(1-4 p)) \geq 0$.
Thus, $\max E=2 \sqrt{2}$, that is for any positive a, b, c holds inequality

$$
2(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)-9 a b c \leq 2 \sqrt{2} \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{3}}
$$

and, using normalization by $a^{2}+b^{2}+c^{2}=9$ we obtain
$2(a+b+c) \cdot 9-9 a b c \leq 2 \sqrt{2} \sqrt{9^{3}}=54 \sqrt{2} \Leftrightarrow$
(1) $2(a+b+c)-a b c \leq 6 \sqrt{2}$.

Equality in inequality occurs iff one of three numbers equal 0 and two others equal $\frac{3}{\sqrt{2}}$.

* Inequality $9 q \geq 4 p-1$ is Schure Inequality $\sum a(a-b)(a-c) \geq 0$ in p,q-notation and normalized by $a+b+c=1$.

